non-abelian, supersoluble, monomial
Aliases: C34⋊6S3, C32⋊He3⋊5C2, C33⋊2(C3⋊S3), (C3×He3)⋊14S3, C3.8(He3⋊5S3), C32⋊2(He3⋊C2), C32.15(C33⋊C2), SmallGroup(486,183)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊He3 — C34⋊6S3 |
C32⋊He3 — C34⋊6S3 |
Generators and relations for C34⋊6S3
G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, eae-1=ad-1, faf=a-1, bc=cb, bd=db, ebe-1=bc-1, fbf=b-1, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1486 in 267 conjugacy classes, 38 normal (5 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, C3×C6, He3, C33, C33, He3⋊C2, S3×C32, C3×C3⋊S3, C3×He3, C34, C3×He3⋊C2, C32×C3⋊S3, C32⋊He3, C34⋊6S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, He3⋊5S3, C34⋊6S3
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(10 13 16)(11 14 17)(12 15 18)(19 25 23)(20 26 24)(21 27 22)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 23)(20 26 24)(21 27 22)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 15 14)(16 18 17)(19 20 21)(22 23 24)(25 26 27)
(1 10 20)(2 11 19)(3 12 21)(4 13 24)(5 14 23)(6 15 22)(7 16 26)(8 17 25)(9 18 27)
(10 20)(11 19)(12 21)(13 24)(14 23)(15 22)(16 26)(17 25)(18 27)
G:=sub<Sym(27)| (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (10,13,16)(11,14,17)(12,15,18)(19,25,23)(20,26,24)(21,27,22), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,23)(20,26,24)(21,27,22), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27), (1,10,20)(2,11,19)(3,12,21)(4,13,24)(5,14,23)(6,15,22)(7,16,26)(8,17,25)(9,18,27), (10,20)(11,19)(12,21)(13,24)(14,23)(15,22)(16,26)(17,25)(18,27)>;
G:=Group( (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (10,13,16)(11,14,17)(12,15,18)(19,25,23)(20,26,24)(21,27,22), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,23)(20,26,24)(21,27,22), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27), (1,10,20)(2,11,19)(3,12,21)(4,13,24)(5,14,23)(6,15,22)(7,16,26)(8,17,25)(9,18,27), (10,20)(11,19)(12,21)(13,24)(14,23)(15,22)(16,26)(17,25)(18,27) );
G=PermutationGroup([[(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(10,13,16),(11,14,17),(12,15,18),(19,25,23),(20,26,24),(21,27,22)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,23),(20,26,24),(21,27,22)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,15,14),(16,18,17),(19,20,21),(22,23,24),(25,26,27)], [(1,10,20),(2,11,19),(3,12,21),(4,13,24),(5,14,23),(6,15,22),(7,16,26),(8,17,25),(9,18,27)], [(10,20),(11,19),(12,21),(13,24),(14,23),(15,22),(16,26),(17,25),(18,27)]])
G:=TransitiveGroup(27,154);
39 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3T | 3U | ··· | 3AC | 6A | ··· | 6H |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 |
size | 1 | 27 | 1 | ··· | 1 | 6 | ··· | 6 | 18 | ··· | 18 | 27 | ··· | 27 |
39 irreducible representations
dim | 1 | 1 | 2 | 2 | 3 | 6 |
type | + | + | + | + | ||
image | C1 | C2 | S3 | S3 | He3⋊C2 | He3⋊5S3 |
kernel | C34⋊6S3 | C32⋊He3 | C3×He3 | C34 | C32 | C3 |
# reps | 1 | 1 | 12 | 1 | 16 | 8 |
Matrix representation of C34⋊6S3 ►in GL6(𝔽7)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(7))| [1,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C34⋊6S3 in GAP, Magma, Sage, TeX
C_3^4\rtimes_6S_3
% in TeX
G:=Group("C3^4:6S3");
// GroupNames label
G:=SmallGroup(486,183);
// by ID
G=gap.SmallGroup(486,183);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,867,2169,303]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*d^-1,f*a*f=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^-1,f*b*f=b^-1,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations